LEAPS Vaccine Incorporating HER-2/neu Epitope Elicits Protection That Prevents and Limits Tumor Growth and Spread of Breast Cancer in a Mouse Model
نویسندگان
چکیده
The prototype J-LEAPS T cell vaccine for HER-2/neu breast cancer (J-HER) consists of the murine HER-2/neu66-74 H-2d CD8 T cell epitope covalently attached through a triglycine linker to the J-immune cell binding ligand (ICBL) (human β2 microglobulin38-50 peptide). The J-ICBL was chosen for its potential to promote Th1/Tc1 responses. In this proof-of-concept study, the ability of J-HER to prevent or treat cancer was tested in the TUBO cell-challenged BALB/c mouse model for HER-2/neu-expressing tumors. The J-HER vaccine was administered as an emulsion in Montanide ISA-51 without the need for a more potent adjuvant. When administered as a prophylactic vaccination before tumor challenge, J-HER protected against tumor development for at least 48 days. Despite eliciting protection, antibody production in J-HER-immunized, TUBO-challenged mice was less than that in unimmunized mice. More importantly, therapeutic administration of J-HER one week after challenge with TUBO breast cancer cells limited the spread of the tumors and the morbidity and the mortality in the challenged mice. The ability to elicit responses that prevent spread of the TUBO tumor by J-HER suggests its utility as a neoimmunoadjuvant therapy to surgery. Individual or mixtures of J-LEAPS vaccines can be readily prepared to include different CD8 T cell epitopes to optimize tumor therapy and customize treatment for individuals with different HLA types.
منابع مشابه
An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model.
Thirty years after angiogenesis was shown to play an enabling role in cancer, modern medicine is still trying to develop novel compounds and therapeutics to target the tumor vasculature. However, most therapeutics require multiple rounds of administration and can have toxic side effects. In this study, we use anti-angiogenesis immunotherapy to target cells actively involved in forming new blood...
متن کاملJ-LEAPS vaccines elicit antigen specific Th1 responses by promoting maturation of type 1 dendritic cells (DC1)
The J-LEAPS peptide vaccine platform allows development of vaccines that elicit antigen specific Th1 immune responses to the incorporated antigenic peptide by promoting the maturation of mouse and human precursors into type 1 dendritic cells (DC1). CD8 T cell epitopes are covalently attached to the J-immune cell binding ligand through a tri-glycine linker. J-LEAPS peptide vaccines have been tes...
متن کاملA novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors.
PURPOSE The aim of this study was to efficiently design a novel vaccine for human Her-2/neu-positive (hHer-2/neu) breast cancer using the live, attenuated bacterial vector Listeria monocytogenes. EXPERIMENTAL DESIGN Three recombinant L. monocytogenes-based vaccines were generated that could express and secrete extracellular and intracellular fragments of the hHer-2/neu protein. In addition, w...
متن کاملAn Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States
Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...
متن کاملAn Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States
Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017